On the Inapproximability of Vertex Cover on k-Partite k-Uniform Hypergraphs

نویسندگان

  • Venkatesan Guruswami
  • Rishi Saket
چکیده

Computing a minimum vertex cover in graphs and hypergraphs is a well-studied optimizaton problem. While intractable in general, it is well known that on bipartite graphs, vertex cover is polynomial time solvable. In this work, we study the natural extension of bipartite vertex cover to hypergraphs, namely finding a small vertex cover in kuniform k-partite hypergraphs, when the k-partition is given as input. For this problem Lovász [16] gave a k 2 factor LP rounding based approximation, and a matching ( k 2 − o(1) ) integrality gap instance was constructed by Aharoni et al. [1]. We prove the following results, which are the first strong hardness results for this problem (here ε > 0 is an arbitrary constant): – NP-hardness of approximating within a factor of ( k 4 − ε ) , and – Unique Games-hardness of approximating within a factor of ( k 2 − ε ) , showing optimality of Lovász’s algorithm under the Unique Games conjecture. The NP-hardness result is based on a reduction from minimum vertex cover in r-uniform hypergraphs for which NP-hardness of approximating within r−1−ε was shown by Dinur et al. [5]. The Unique Games-hardness result is obtained by applying the recent results of Kumar et al. [15], with a slight modification, to the LP integrality gap due to Aharoni et al. [1]. The modification is to ensure that the reduction preserves the desired structural properties of the hypergraph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inapproximability of Hypergraph Vertex Cover and Applications to Scheduling Problems

Assuming the Unique Games Conjecture (UGC), we show optimal inapproximability results for two classic scheduling problems. We obtain a hardness of 2 − ε for the problem of minimizing the total weighted completion time in concurrent open shops. We also obtain a hardness of 2 − ε for minimizing the makespan in the assembly line problem. These results follow from a new inapproximability result for...

متن کامل

Nearly Optimal NP-Hardness of Vertex Cover on k-Uniform k-Partite Hypergraphs

We study the problem of computing the minimum vertex cover on k-uniform k-partite hypergraphs when the k-partition is given. On bipartite graphs (k = 2), the minimum vertex cover can be computed in polynomial time. For general k, the problem was studied by Lovász [23], who gave a k 2 -approximation based on the standard LP relaxation. Subsequent work by Aharoni, Holzman and Krivelevich [1] show...

متن کامل

Inapproximability of Minimum Vertex Cover on k-Uniform k-Partite Hypergraphs

We study the problem of computing the minimum vertex cover on k-uniform k-partite hypergraphs when the k-partition is given. On bipartite graphs (k = 2), the minimum vertex cover can be computed in polynomial time. For k ≥ 3, this problem is known to be NP-hard. For general k, the problem was studied by Lovász [23], who gave a k2 -approximation based on the standard LP relaxation. Subsequent wo...

متن کامل

NFA reduction via hypergraph vertex cover approximation

In this thesis, we study the minimum vertex cover problem on the class of k-partite kuniform hypergraphs. This problem arises when reducing the size of nondeterministic finite automata (NFA) using preorders, as suggested by Champarnaud and Coulon. It has been shown that reducing NFAs using preorders is at least as hard as computing a minimal vertex cover on 3-partite 3-uniform hypergraphs, whic...

متن کامل

Tight Approximation Bounds for Vertex Cover on Dense k-Partite Hypergraphs

We establish almost tight upper and lower approximation bounds for the Vertex Cover problem on dense k-partite hypergraphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010